765 research outputs found

    How does an interacting many-body system tunnel through a potential barrier to open space?

    Get PDF
    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of alpha-decay, fusion and fission in nuclear physics, photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constitutent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a more transparent and controllable physical system, in an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schr\"odinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: the overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wavefunction in the respective processes.Comment: 18 pages, 4 figures (7 pages, 2 figures supplementary information

    Rates of multi-partite entanglement transformations and applications in quantum networks

    Full text link
    The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered completely understood: The rates at which bipartite entangled states can be asymptotically transformed into each other are fully determined by a single number each, the respective entanglement entropy. In the multi-partite setting, similar questions of the optimally achievable rates of transforming one pure state into another are notoriously open. This seems particularly unfortunate in the light of the revived interest in such questions due to the perspective of experimentally realizing multi-partite quantum networks. In this work, we report substantial progress by deriving surprisingly simple upper and lower bounds on the rates that can be achieved in asymptotic multi-partite entanglement transformations. These bounds are based on ideas of entanglement combing and state merging. We identify cases where the bounds coincide and hence provide the exact rates. As an example, we bound rates at which resource states for the cryptographic scheme of quantum secret sharing can be distilled from arbitrary pure tripartite quantum states, providing further scope for quantum internet applications beyond point-to-point.Comment: 4+7 pages, 1 figure, v2 is significantly extended in its results and presents a general statement providing bounds for achievable asymptotic rates for an arbitrary number of partie

    Entanglement distribution and quantum discord

    Full text link
    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum correlations and their applications", edited by Felipe Fanchini, Diogo Soares-Pinto, and Gerardo Adess

    On the Asymmetry Between Upward and Downward Field-Aligned Currents Interacting With the Ionosphere

    Get PDF
    The paper presents results from the numerical study of the magnetosphere-ionosphere interactions driven by the large-scale electric field in the magnetically conjugate, high-latitude regions of northern and southern hemispheres. Simulations of the two-fluid MHD model demonstrate that these interactions can lead to a generation of a system of small-scale, intense field-aligned currents with a significant difference in size and amplitude between the upward and downward currents. In particular, in both hemispheres, the downward currents (where the electrons are flowing from the ionosphere) become more narrow and intense than the adjacent upward currents. At high latitudes, the field-aligned currents are closely related to the discrete auroral arcs. The fact that this mechanism produces very narrow and intense downward currents embedded into the broader upward current regions makes it relevant to the explanation of the “black” auroral arcs appearing as narrow, dark strips embedded in the broad luminous background

    Orbital structure and magnetic ordering in stoichiometric and doped crednerite CuMnO2

    Full text link
    The exchange interactions and magnetic structure in layered system CuMnO2 (mineral crednerite) and in nonstoichiometric system Cu1.04Mn0.96O2, with triangular layers distorted due to orbital ordering of the Mn3+ ions, are studied by ab-initio band-structure calculations, which were performed within the GGA+U approximation. The exchange interaction parameters for the Heisenberg model within the Mn-planes and between the Mn-planes were estimated. We explain the observed in-plane magnetic structure by the dominant mechanism of the direct d-d exchange between neighboring Mn ions. The superexchange via O ions, with 90 degree Mn-O-Mn bonds, plays less important role for the in-plane exchange. The interlayer coupling is largely dominated by one exchange path between the half-filled 3z^2-r^2 orbitals of Mn3+. The change of interlayer coupling from antiferromagnetic in pure CuMnO2 to ferromagnetic in doped material is also explained by our calculations

    Quantum cost for sending entanglement

    Full text link
    Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.Comment: Added a reference to the related article arXiv:1203.1268 by T. K. Chuan et a

    Entanglement and coherence in quantum state merging

    Get PDF
    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum, and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.Comment: 9 pages, 1 figure. Lemma 5 in Appendix D of the previous version was not correct. This did not affect the results of the main tex
    corecore